113 research outputs found

    Vertex deduplication based on string similarity and community membership

    Get PDF

    Partisan Asymmetries in Online Political Activity

    Get PDF
    We examine partisan differences in the behavior, communication patterns and social interactions of more than 18,000 politically-active Twitter users to produce evidence that points to changing levels of partisan engagement with the American online political landscape. Analysis of a network defined by the communication activity of these users in proximity to the 2010 midterm congressional elections reveals a highly segregated, well clustered partisan community structure. Using cluster membership as a high-fidelity (87% accuracy) proxy for political affiliation, we characterize a wide range of differences in the behavior, communication and social connectivity of left- and right-leaning Twitter users. We find that in contrast to the online political dynamics of the 2008 campaign, right-leaning Twitter users exhibit greater levels of political activity, a more tightly interconnected social structure, and a communication network topology that facilitates the rapid and broad dissemination of political information.Comment: 17 pages, 10 figures, 6 table

    Consensus clustering in complex networks

    Get PDF
    The community structure of complex networks reveals both their organization and hidden relationships among their constituents. Most community detection methods currently available are not deterministic, and their results typically depend on the specific random seeds, initial conditions and tie-break rules adopted for their execution. Consensus clustering is used in data analysis to generate stable results out of a set of partitions delivered by stochastic methods. Here we show that consensus clustering can be combined with any existing method in a self-consistent way, enhancing considerably both the stability and the accuracy of the resulting partitions. This framework is also particularly suitable to monitor the evolution of community structure in temporal networks. An application of consensus clustering to a large citation network of physics papers demonstrates its capability to keep track of the birth, death and diversification of topics.Comment: 11 pages, 12 figures. Published in Scientific Report

    Router-level community structure of the Internet Autonomous Systems

    Get PDF
    The Internet is composed of routing devices connected between them and organized into independent administrative entities: the Autonomous Systems. The existence of different types of Autonomous Systems (like large connectivity providers, Internet Service Providers or universities) together with geographical and economical constraints, turns the Internet into a complex modular and hierarchical network. This organization is reflected in many properties of the Internet topology, like its high degree of clustering and its robustness. In this work, we study the modular structure of the Internet router-level graph in order to assess to what extent the Autonomous Systems satisfy some of the known notions of community structure. We show that the modular structure of the Internet is much richer than what can be captured by the current community detection methods, which are severely affected by resolution limits and by the heterogeneity of the Autonomous Systems. Here we overcome this issue by using a multiresolution detection algorithm combined with a small sample of nodes. We also discuss recent work on community structure in the light of our results

    Combined node and link partitions method for finding overlapping communities in complex networks

    Get PDF
    Community detection in complex networks is a fundamental data analysis task in various domains, and how to effectively find overlapping communities in real applications is still a challenge. In this work, we propose a new unified model and method for finding the best overlapping communities on the basis of the associated node and link partitions derived from the same framework. Specifically, we first describe a unified model that accommodates node and link communities (partitions) together, and then present a nonnegative matrix factorization method to learn the parameters of the model. Thereafter, we infer the overlapping communities based on the derived node and link communities, i.e., determine each overlapped community between the corresponding node and link community with a greedy optimization of a local community function conductance. Finally, we introduce a model selection method based on consensus clustering to determine the number of communities. We have evaluated our method on both synthetic and real-world networks with ground-truths, and compared it with seven state-of-the-art methods. The experimental results demonstrate the superior performance of our method over the competing ones in detecting overlapping communities for all analysed data sets. Improved performance is particularly pronounced in cases of more complicated networked community structures

    Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data

    Get PDF
    Determining the functional structure of biological networks is a central goal of systems biology. One approach is to analyze gene expression data to infer a network of gene interactions on the basis of their correlated responses to environmental and genetic perturbations. The inferred network can then be analyzed to identify functional communities. However, commonly used algorithms can yield unreliable results due to experimental noise, algorithmic stochasticity, and the influence of arbitrarily chosen parameter values. Furthermore, the results obtained typically provide only a simplistic view of the network partitioned into disjoint communities and provide no information of the relationship between communities. Here, we present methods to robustly detect coregulated and functionally enriched gene communities and demonstrate their application and validity for Escherichia coli gene expression data. Applying a recently developed community detection algorithm to the network of interactions identified with the context likelihood of relatedness (CLR) method, we show that a hierarchy of network communities can be identified. These communities significantly enrich for gene ontology (GO) terms, consistent with them representing biologically meaningful groups. Further, analysis of the most significantly enriched communities identified several candidate new regulatory interactions. The robustness of our methods is demonstrated by showing that a core set of functional communities is reliably found when artificial noise, modeling experimental noise, is added to the data. We find that noise mainly acts conservatively, increasing the relatedness required for a network link to be reliably assigned and decreasing the size of the core communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1 was not uploaded but is available by contacting the author. 27 pages, 5 figures, 15 supplementary file

    Metrics matter in community detection

    Full text link
    We present a critical evaluation of normalized mutual information (NMI) as an evaluation metric for community detection. NMI exaggerates the leximin method's performance on weak communities: Does leximin, in finding the trivial singletons clustering, truly outperform eight other community detection methods? Three NMI improvements from the literature are AMI, rrNMI, and cNMI. We show equivalences under relevant random models, and for evaluating community detection, we advise one-sided AMI under the Mall\mathbb{M}_{\mathrm{all}} model (all partitions of nn nodes). This work seeks (1) to start a conversation on robust measurements, and (2) to advocate evaluations which do not give "free lunch"

    Soft Image Segmentation: On the Clustering of Irregular, Weighted, Multivariate Marked Networks

    Get PDF
    The contribution exposes and illustrates a general, flexible formalism, together with an associated iterative procedure, aimed at determining soft memberships of marked nodes in a weighted network. Gathering together spatial entities which are both spatially close and similar regarding their features is an issue relevant in image segmentation, spatial clustering, and data analysis in general. Unoriented weighted networks are specified by an ``exchange matrix", determining the probability to select a pair of neighbors. We present a family of membership-dependent free energies, whose local minimization specifies soft clusterings. The free energy additively combines a mutual information, as well as various energy terms, concave or convex in the memberships: within-group inertia, generalized cuts (extending weighted Ncut and modularity), and membership discontinuities (generalizing Dirichlet forms). The framework is closely related to discrete Markov models, random walks, label propagation and spatial autocorrelation (Moran's I), and can express the Mumford-Shah approach. Four small datasets illustrate the theory

    Trust and distrust in contradictory information transmission

    Get PDF
    We analyse the problem of contradictory information distribution in networks of agents with positive and negative trust. The networks of interest are built by ranked agents with different epistemic attitudes. In this context, positive trust is a property of the communication between agents required when message passing is executed bottom-up in the hierarchy, or as a result of a sceptic agent checking information. These two situations are associated with a confirmation procedure that has an epistemic cost. Negative trust results from refusing verification, either of contradictory information or because of a lazy attitude. We offer first a natural deduction system called SecureNDsim to model these interactions and consider some meta-theoretical properties of its derivations. We then implement it in a NetLogo simulation to test experimentally its formal properties. Our analysis concerns in particular: conditions for consensus-reaching transmissions; epistemic costs induced by confirmation and rejection operations; the influence of ranking of the initially labelled nodes on consensus and costs; complexity results
    corecore